Appendix: Polynomials Arising from the Tautological Ring
نویسنده
چکیده
منابع مشابه
Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$
Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...
متن کاملTwo Murnaghan-nakayama Rules in Schubert Calculus
The Murnaghan-Nakayama rule expresses the product of a Schur function with a Newton power sum in the basis of Schur functions. We establish a version of the Murnaghan-Nakayama rule for Schubert polynomials and a version for the quantum cohomology ring of the Grassmannian. These rules compute all intersections of Schubert cycles with tautological classes coming from the Chern character. Like the...
متن کاملM ar 2 00 3 COMBINATORIAL CLASSES ON M g , n ARE TAUTOLOGICAL
The combinatorial description via ribbon graphs of the moduli space of Riemann surfaces allows to define combinatorial cycles in a natural way. Witten and Kontsevich first conjectured that these classes are polynomials in the tautological classes. We answer affirmatively to this conjecture and find recursively all the polynomials. Moreover we lift the combinatorial classes to the Deligne-Mumfor...
متن کاملTautological Pairings on Moduli Spaces of Curves
We discuss analogs of Faber’s conjecture for two nested sequences of partial compactifications of the moduli space of smooth curves. We show that their tautological rings are one-dimensional in top degree but do not satisfy Poincaré duality. The structure of the tautological ring of the moduli space of stable curves is predicted by the Faber conjecture, which states that R(Mg,n) is Gorenstein w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000